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Game theory is the study of strategic interac-
tion: how a person should and will behave if
her actions affect others and their actions af-
fect her. (We use the term “person” here, but
“agent” might be more appropriate, because,
in the literature, game theory applies to firms,
nations, or even genes, as well as to individual
people.) Among fields of application, the the-
ory has had its biggest influence on econom-
ics (but has also had considerable sway over
political science, evolutionary biology, and
computer science, among other disciplines).
Economists are interested in predicting (or

at least explaining) behavior in economic en-
vironments, for example, what products firms
will offer for sale, which goods and services
households will purchase, or what securities
(e.g., stocks or bonds) investors will trade.
To see how game theory has contributed to
this effort—and, in fact, has revolutionized
economics—think about trying to analyze
the behavior of firms in the American auto-
mobile industry. To simplify, let’s suppose
that the industry is dominated by three com-
panies, General Motors, Ford, and Chrysler
(these three did indeed dominate for many
years). Now, for General Motors to figure out
what models to launch, how many units of
each model to produce, and what prices to set
for them, it has to anticipate what Ford and
Chrysler will be doing. However, the same
sort of anticipation is required of Ford and
Chrysler. That is, Ford’s best course of action
will depend on what it thinks GM and Chrys-
ler are going to do. Actually, it’s even more
complex than that, because GM will under-
stand that Ford is trying to forecast GM’s
behavior. Therefore, to predict Ford’s actions,
GM also has to anticipate Ford’s anticipation,
and so on, to higher and higher levels of pre-
diction. Such mutual forecasting is clearly
crucial to an analysis of the automobile mar-
ket but is potentially extremely complex.

Nash’s Contribution
John Nash (1) proposed a simple but powerful
concept that cut through this complexity.

Because each player in the game (each firm
in the automobile industry) is trying to
optimize given its anticipation of others’
strategies, he defined an “equilibrium point”
(now called a Nash equilibrium) as a fixed
point of these optimizations. Specifically, a
Nash equilibrium is a configuration of
strategies—one for each player—such that
no player gains by unilaterally changing its
strategy. The concept enormously simplifies
the forecasting problem: If each player an-
ticipates that others will use their Nash
equilibrium strategies, then it will do so
too, and the forecasts will be self-confirming.
The success of the Nash equilibrium concept
as a predictive and explanatory tool in such
settings as the automobile industry trans-
formed much of economics.
Nash equilibrium also helps illuminate

behavior in vast array of environments out-
side economics. To take a simple example,
consider how you behaved if you drove to
work this morning. If you are in the United
States, you probably drove on the right-hand
side of the road. Why? Because you antici-
pated that oncoming drivers would stay to the
right, and they anticipated the same of you.
These anticipations were self-confirming be-
cause everybody driving on the right consti-
tutes a Nash equilibrium; switching to another
strategy unilaterally could well be disastrous.
More formally, suppose that there are n

players, where each player i  ði= 1, ..., nÞ has a
strategy space Si, a set of possible behaviors.
In the driving game, for instance, Si consists
of “driving on the right” and “driving on the
left.” A game is a function

g : S1 × . . . × Sn →Rn, [1]

where gðs1, . . . , snÞ= ðg1ðs1, . . . , snÞ, . . . gn
ðs1, . . . , snÞÞ, and giðs1, . . . , snÞ is player i’s
payoff when strategies ðs1, . . . , snÞ are played
[when focusing on player i’s payoff, we will
sometimes write ðs1, . . . , snÞ as ðsi, s−iÞ, where
s−i is the (n –1)-tuple of the other players’

strategies]. A Nash equilibrium is an n-tuple
of strategies ðsp1, . . . , spnÞ= ðspi , sp−iÞ such that

gi
�
sp1, . . . , s

p
n

�
≥ gi

�
si, sp−i

�
, i= 1, . . . , n,

and  all  si ∈ Si. [2]

In words, no player i gains by unilaterally de-
viating from spi to si.
Nash (2) showed that a finite game (a

game in which each player’s strategy space is
finite) has a Nash equilibrium, once players
are allowed to randomize over their strategies.
Formally, a mixed or randomized strategy for
player i is a probability distribution pi over
player i’s pure strategies Si, where, for each
si ∈ Si, piðsiÞ is the probability that player i
uses strategy si. If players use mixed strategies
ðp1, . . . , pnÞ, then, assuming these randomi-
zations are independent across players,

player  i’s  expected  payoff =
X

s1∈S1

⋯
X

sn∈Sn

giðs1, . . . , snÞ  p1ðs1Þ . . . pnðsnÞ

= gi
�
p1, . . . , pn

�
= gi

�
pi, p−i

�
.

Nash proved that there exists an n-tuple
ðpp1, . . . , ppnÞ such that

gi
�
pp1, . . . , p

p
n

�
≥ gi

�
pi, pp−i

�
for  all  i  and  pi.

[3]

Nash’s proof was short and simple. For each
(n –1)-tuple p−i of other players’ mixed strat-
egies, let ψ iðp−iÞ= fpi

��giðpi, p−iÞ≥ giðpi′, p−iÞ
for  all    pi′g. The mapping ψ i is player i’s
“best-response” correspondence: ψ iðp−iÞ con-
sists of all randomized strategies that maximize
her payoff given p−i. Let ψ be the cross product
of the ψ is: ψðp1, . . . , pnÞ=ψ1ðp−1Þ× . . . ×
ψnðp−nÞ. Then, ψ is an upper hemi-
continuous, convex-valued, and non-empty-
valued correspondence that maps the set of
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randomized strategy n-tuples to itself. Thus,
from the Kakutani fixed point theorem (3), a
fixed point ðpp1, . . . , ppnÞ∈ψðpp1, . . . , ppnÞ ex-
ists, and, by definition of ψ, ðpp1, . . . , ppnÞ sat-
isfies Formula 3, i.e., it is a Nash equilibrium.
A serious limitation of Formula 1 is that it

assumes that a player’s set of options is not
affected by what others do; that is, player i’s
strategy space Si does not depend on other
players’ strategies. This assumption, admittedly,
fits many settings. In the driving game, for
example, you are free to drive on the right or
left independently of others’ choices (al-
though the consequences of which side you
drive on will certainly depend on those
choices). However, there are many other
games in which the assumption does not
make sense. Imagine, for instance, a super-
market shopper interested in buying the
basket of goods that is best for her family.
Naturally, she can’t choose any basket she
pleases; she must stay within her budget.
However, this budget is not independent of
what other players in the economy do; it will
presumably depend, for example, on what
her employer pays her. Also, given her bud-
get, which baskets are affordable will depend
on the various goods’ prices, which, in turn,
are determined by supply and demand in
the economy.

Debreu’s Contribution
This is where Gérard Debreu’s “A social
equilibrium existence theorem” (4) comes in.
Debreu (4) extended the very notion of a
game to allow for the possibility that a player’s
set of strategies might depend on the strategy
choices of other players. Specifically, he sup-
posed that for each player i and each (n –1)-
tuple of other players’ strategies s−i, player i’s
choices are limited to some subset γiðs−iÞ⊆ Si;
that is, γiðs−iÞ are the strategies that are fea-
sible for player i when others play s−i. In this
more general setting, a social equilibrium is an
n-tuple ðsp1, . . . , spnÞ such that, for all i,

spi ∈ γi
�
sp−i

�
[4]

and

gi
�
sp1, . . . , s

p
n

�
≥ gi

�
si, sp−i

�
for  all  si ∈ γi

�
sp−i

�
.

[5]

In words, each player, in equilibrium, must
be playing a feasible strategy (Formula 4), and
no player can gain by unilaterally deviating to
some other feasible strategy (Formula 5). (Be-
cause Debreu was interested in equilibrium in
pure strategies, we have not introduced random-
izations in Formula 5.)
Debreu (4) also gave conditions under

which a social equilibrium (in pure strat-
egies) is guaranteed to exist. Specifically,
he showed that if, for all i, (i)Si is a
compact and convex subset of Euclidean
space, (ii) gi is continuous in ðsi, s−iÞ and
quasi-concave in si, i.e., giðλsi + ð1− λÞsi′,
s−iÞ≥minfgiðsi, s−iÞ, giðsi′, s−iÞg for all λ
with 0≤ λ≤ 1, and (iii) γi is upper and lower
hemicontinuous, convex-valued, and non-
empty-valued, then there exists an n-tuple
ðsp1, . . . , spnÞ satisfying Formulas 4 and 5.
Because Nash (2) was working with ran-

domized strategies, he obtained conditions i
and ii automatically: The set of randomiza-
tions over a finite strategy set is a compact and
convex subset of Euclidean space, and the
corresponding payoff function giðpi, p−iÞ is
continuous in ðpi, p−iÞ and linear (and hence
quasi-concave) in pi. Thus Debreu’s use of
conditions i and ii in his proof of existence was
a straightforward generalization of Nash. The
novel part of Debreu’s argument was his use of
the lower hemicontinuity of γi to show that
best-response correspondences are upper
hemicontinuous. For all i and s−i, let

ψ̂ iðs−iÞ=
�
si ∈ γiðs−iÞ

��giðsi, s−iÞ≥ giðsi′, s−iÞ 
for  all    si′∈ γiðs�iÞ

�
.

The correspondence ψ̂ i selects player i’s feasible
best responses to s−i. ψ̂ i is non-empty-valued
because Si is compact, gi is continuous, and γi
is upper hemicontinuous and non-empty-
valued; it is convex-valued because gi is
quasi-concave and γi is convex-valued [so
far, the argument parallels Nash (2)]. To see
that ψ̂ i is upper hemicontinuous, consider a

sequence ðsmi , sm−iÞ→ ðsi, s−iÞ where, for all m,
smi ∈ ψ̂ iðsm−iÞ. Now, si ∈ γiðs−iÞ from the upper
hemicontinuity of γi. If si ∉ ψ̂ iðs−iÞ, there must
exist ŝi ∈ γiðs−iÞ such that gið̂si, s−iÞ> giðsi, s−iÞ.
However, because γi is lower hemicontinuous,
there must exist ŝmi → ŝ−i such that ŝmi ∈ γ̂iðsm−iÞ
for allm. Hence, by continuity of gi, gið̂si, sm−iÞ>
gið̂smi , sm−iÞ for m big enough, a contradiction of
smi ∈ ψ̂ iðsm−iÞ. We conclude that si ∈ ψ̂ iðs−iÞ.
Thus, Debreu concludes that ψ̂ i is upper hemi-
continuous, and the Kakutani theorem now ap-
plies to give the existence result.
One centrally important application of

Debreu’s theorem was to establish the exis-
tence of a general equilibrium in a competi-
tive economy. An economy is competitive if
the players—the producers and consumers—
are too small as individuals to affect market
prices. In a general equilibrium of such an
economy, the profit-maximizing choices of
producers and the preference-maximizing
choices of consumers (given equilibrium
prices) are consistent in the sense that supply
equals demand in every market. Arrow and
Debreu (5) laid out the model of a compet-
itive economy and used Debreu’s theorem to
show that a general equilibrium exists in this
model. The Debreu theorem was of crucial
importance here because consumers’ feasible
choices in the Arrow−Debreu model depend
on their incomes and on prices, as in the
supermarket example above.
Debreu (4) succeeded in (i) generalizing the

standard framework of game theory by
allowing players’ feasible strategy spaces to
depend on others’ behavior, (ii) formulating
conditions under which a social equilibrium
(the natural extension of Nash equilibrium)
exists in a generalized game, and (iii) pro-
viding the key tool for Arrow and Debreu (5)
to establish the existence of a general equi-
librium in a competitive economy. For all
these reasons, it is a landmark paper.
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